We introduce LMD-ViT, a Transformer-based local motion deblurring method with an adaptive window pruning mechanism. We prune unnecessary windows based on the predicted blurriness confidence supervised by our blur region annotation. In this process, the feature maps are pruned at varying levels of granularity within blocks of different resolutions. The white masks in AdaWPT 5 to 8 denote tokens to be preserved, and regions without white masks are pruned. The grids denote window borders. Unlike global deblurring methods that modify global regions, LMD-ViT performs dense computing only on the active windows of blurry regions. Consequently, local blurs are efficiently removed without distorting sharp regions.
Local motion blur commonly occurs in real-world photography due to the mixing between moving objects and stationary backgrounds during exposure. Existing image deblurring methods predominantly focus on global deblurring, inadvertently affecting the sharpness of backgrounds in locally blurred images and wasting unnecessary computation on sharp pixels, especially for high-resolution images. This paper aims to adaptively and efficiently restore high-resolution locally blurred images. We propose a local motion deblurring vision Transformer (LMD-ViT) built on adaptive window pruning Transformer blocks (AdaWPT). To focus deblurring on local regions and reduce computation, AdaWPT prunes unnecessary windows, only allowing the active windows to be involved in the deblurring processes. The pruning operation relies on the blurriness confidence predicted by a confidence predictor that is trained end-to-end using a reconstruction loss with Gumbel-Softmax re-parameterization and a pruning loss guided by annotated blur masks. Our method removes local motion blur effectively without distorting sharp regions, demonstrated by its exceptional perceptual and quantitative improvements compared to state-of-the-art methods. In addition, our approach substantially reduces FLOPs by 66% and achieves more than a twofold increase in inference speed compared to Transformer-based deblurring methods.
MouseOver: LMD-ViT deblurred images
MouseOut: Locally blurred images
We referred to the project page of A-ViT when creating this project page.